
e-Propane

Proof of concept for a direct **CO₂-to-propane** conversion via genetically engineered microbes, and assessing requirements for its implementation in bioreactors and the economic competitiveness

Innovation:

Academic:

- Silvan Scheller (Coordinator, Aalto University)
- Paula Jouhten (Aalto University)
- Rofice Dickson (Aalto University)
- Marika Kokko (Tampere University)

Industry:

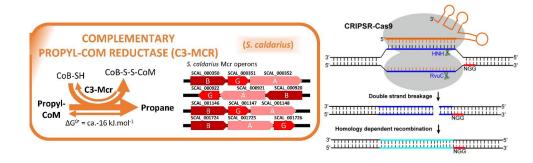
- Borealis
- Neste
- Fortum
- Q-power
- Solar Foods

Neste Veturi: final event, May 7th 2025

e-Propane: Preliminary Results

Engineered pathway inside GMO microbes:

4 $\mathbf{CO_2} \square$ 2 acetate \square butyrate \square $\mathbf{CO_2}$ + propyl-S-CoM \square **propane**


<u>Cultivation of *M. maripaludis*</u> (can be genetically engineered)

Bioreactors at Tampere University:

- Biomass growth and methane enhanced by optimizing mixing
- H₂ conversion to CH₄ has been up to 35% but will be further optimized, by using gas recirculation

<u>Insertion of mcr-genes</u> (responsible for propane production)

Genetic modifications at Aalto University:

- Propane-oxidizing microbe (S. caldarius)
 cultured at Aalto
- DNA extracted and mcr genes amplified
- Gene integration via CRISPR-Cas9
- Activity testing ongoing